A spatial Bayesian approach to weather derivatives

نویسندگان

  • Nicholas D. Paulson
  • Dermot J. Hayes
چکیده

Purpose – While the demand for weather-based agricultural insurance in developed regions is limited, there exists significant potential for the use of weather indexes in developing areas. The purpose of this paper is to address the issue of historical data availability in designing actuarially sound weather-based instruments. Design/methodology/approach – A Bayesian rainfall model utilizing spatial kriging and Markov chain Monte Carlo techniques is proposed to estimate rainfall histories from observed historical data. An example drought insurance policy is presented where the fair rates are calculated using Monte Carlo methods and a historical analysis is carried out to assess potential policy performance. Findings – The applicability of the estimation method is validated using a rich data set from Iowa. Results from the historical analysis indicate that the systemic nature of weather risk can vary greatly over time, even in the relatively homogenous region of Iowa. Originality/value – The paper shows that while the kriging method may be more complex than competing models, it also provides a richer set of results. Furthermore, while the application is specific to forage production in Iowa, the rainfall model could be generalized to other regions by incorporating additional climatic factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Bayesian computing for spatial extremes

ROBERT J. ERHARDT: Approximate Bayesian Computing for Spatial Extremes. (Under the direction of Richard L. Smith.) Statistical analysis of max-stable processes used to model spatial extremes has been limited by the difficulty in calculating the joint likelihood function. This precludes all standard likelihood-based approaches, including Bayesian approaches. Here we present a Bayesian approach t...

متن کامل

Spatial count models on the number of unhealthy days in Tehran

Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...

متن کامل

Stochastic Models for Pricing Weather Derivatives using Constant Risk Premium

‎Pricing weather derivatives is becoming increasingly useful‎, ‎especially in developing economies‎. ‎We describe a statistical model based approach for pricing  weather derivatives by modeling and forecasting daily average temperatures data which exhibits long-range dependence‎. ‎We pre-process the temperature data by filtering for seasonality and volatility an...

متن کامل

Bayesian Analysis of Survival Data with Spatial Correlation

Often in practice the data on the mortality of a living unit correlation is due to the location of the observations in the study‎. ‎One of the most important issues in the analysis of survival data with spatial dependence‎, ‎is estimation of the parameters and prediction of the unknown values in known sites based on observations vector‎. ‎In this paper to analyze this type of survival‎, ‎Cox...

متن کامل

Bayesian Analysis of Censored Spatial Data Based on a Non-Gaussian Model

Abstract: In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010